Details

Applied Multidimensional Scaling and Unfolding


Applied Multidimensional Scaling and Unfolding


SpringerBriefs in Statistics 2nd ed. 2018

von: Ingwer Borg, Patrick J.F. Groenen, Patrick Mair

51,16 €

Verlag: Springer
Format: PDF
Veröffentl.: 16.05.2018
ISBN/EAN: 9783319734712
Sprache: englisch

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.).This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfolding users tend to make. Further, it shows how MDS and unfolding can be used in practical research work, primarily by using the smacof package in the R environment but also Proxscal in SPSS. It is a valuable resource for psychologists, social scientists, and market researchers, with a basic understanding of multivariate statistics (such as multiple regression and factor analysis).   
1 First steps.- 2 The purpose of MDS and Unfolding.- 3 The fit of MDS and Unfolding solutions.- 4 Proximities.- 5 Variants of MDS models.- 6 Confirmatory MDS.- 7 Typical mistakes in MDS.- 8 Unfolding.- 9 MDS algorithms.- 10 MDS Software.- Subject Index.
Ingwer Borg is visiting professor of psychology at WWU Münster (Germany). He was scientific director at GESIS (Mannheim, Germany), psychology professor at JLU (Gießen, Germany), and research director at HRC (Munich, Germany). He has authored or edited 20 books and numerous articles on data analysis, survey research, theory construction, and various substantive fields of psychology, from psychophysics to job satisfaction.Patrick J.F. Groenen is professor of statistics at the Econometric Institute, Erasmus University Rotterdam, the Netherlands. His main research interests are in data science visualization techniques, such as multidimensional scaling, unfolding, and nonlinear multivariate analysis techniques. He has coauthored both technical and more applied papers in a variety of international journals. Patrick Mair received his PhD in statistics from the University of Vienna in 2005. Since 2013 he has worked as senior lecturer in statistics at the Department of Psychology, Harvard University. His research focuses on computational and applied statistics with special emphasis on psychometric methods, such as latent variable models and multivariate exploratory techniques.
This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfolding users tend to make. Further, it shows how MDS and unfolding can be used in practical research work, primarily by using the smacof package in the R environment but also Proxscal in SPSS. It is a valuable resource for psychologists, social scientists, and market researchers, with a basic understanding of multivariate statistics (such as multiple regression and factor analysis).
Provides a concise, largely conceptual introduction to multidimensional scaling and unfoldingFocuses on how to actually run and interpret MDS and unfolding in applied research (with examples from psychology, the social sciences, and market research)Explains with several examples how to use the R-package smacof for MDS/unfolding and Proxscal in SPSS Includes numerous R-scripts that show how to run MDS and unfolding analyses (a file containing all scripts, and more, can be downloaded)

Diese Produkte könnten Sie auch interessieren:

Cohomology of Arithmetic Groups
Cohomology of Arithmetic Groups
von: James W. Cogdell, Günter Harder, Stephen Kudla, Freydoon Shahidi
PDF ebook
142,79 €
Ensemble Classification Methods with Applications in R
Ensemble Classification Methods with Applications in R
von: Esteban Alfaro, Matías Gámez, Noelia García
EPUB ebook
108,99 €